
 

 

This is a preprint of a paper intended for publication in a journal or 
proceedings. Since changes may be made before publication, this 
preprint should not be cited or reproduced without permission of the 
author. This document was prepared as an account of work 
sponsored by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, or any of 
their employees, makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for any third party’s use, 
or the results of such use, of any information, apparatus, product or 
process disclosed in this report, or represents that its use by such 
third party would not infringe privately owned rights. The views 
expressed in this paper are not necessarily those of the United 
States Government or the sponsoring agency. 

INL/CON-12-26847
PREPRINT

A Resilient Condition 
Assessment Monitoring 
System 
 

5th International Symposium on 
Resilient Control Systems 
 

Humberto E. Garcia 
Wen-Chiao Lin 
Semyon M. Meerkov 

 

August 2012 
 



A Resilient Condition Assessment Monitoring System

Humberto E. Garcia, Wen-Chiao Lin, and Semyon M. Meerkov

Abstract— An architecture and supporting methods are pre-
sented for the implementation of a resilient condition assessment
monitoring system that can adaptively accommodate both cyber
and physical anomalies to a monitored system under obser-
vation. In particular, the architecture includes three layers:
information, assessment, and sensor selection. The information
layer estimates probability distributions of process variables
based on sensor measurements and assessments of the quality
of sensor data. Based on these estimates, the assessment layer
then employs probabilistic reasoning methods to assess the
plant health. The sensor selection layer selects sensors so that
assessments of the plant condition can be made within desired
time periods. Resilient features of the developed system are then
illustrated by simulations of a simplified power plant model,
where a large portion of the sensors are under attack.

Index Terms— Resilient systems, resilient monitoring, cyber-
physical attacks, cyber/physical condition assessments, rational
controllers, graceful degradation, measure of resiliency.

I. INTRODUCTION

A. Motivation

Complex engineering systems need to be reliably mon-
itored in order to ensure safety and proper operations. To
this end, sensors are typically deployed within the monitored
facility in order to observe the behavior of key process
variables and access system conditions. Monitoring chal-
lenges include efficient processing of information and correct
assessment of facility health despite possible natural or ma-
licious disturbances. While natural disturbances can often be
characterized reasonably well, malicious disturbances are ill-
characterized. Regarding the latter, a significantly damaging
disturbance to design against is the cyber-physical coordi-
nated attack. In a cyber-physical coordinated attack, an at-
tacker may cause a physical damage to the monitored facility
and, furthermore, coordinately compromise the information
layer via a cyber attack (e.g., by causing sensors to provide
false readings of process variables) so as to confuse the
operator of the actual plant health conditions. As intended by
the attacker, a potential result may be that the operator, due
to this confusion, takes a wrong decision, such as shutting
down the monitored process or switching the plant to an
inappropriate operating mode, while he/she otherwise could
have gracefully maintained operations amid in a degraded
mode, for example. Here, coordinated means that attacks
occur at different locations of the monitoring system, while
cyber-physical means that there are not only physical but also
cyber attacks. A resilient monitoring system, which meets the
above challenges, should possess the following properties:

• exhibit graceful degradation in performance, as op-
posed to sudden collapse, under severe disturbances;
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• capable of effectively accommodating ill-defined or ill-
characterized anomalies;

• capable of marshalling data according to assessed
health condition of the monitored system;

• dynamically select active sensors for data collection in
an untrackable manner that would complicate the task
of an attacker in inflicting severe consequences;

• utilize prediction calculations regarding performance
of solution alternatives when dynamically selecting
sensors;

• capable of accommodating partial and unreliable sen-
sory information;

• provide proper assessments of the monitored system
within specified decision periods despite severe distur-
bances, such as cyber-physical coordinated attacks.

A monitoring system with the above properties should exhibit
the behavior of resilient systems described in [1], [2]. This
paper develops a monitoring system that satisfies these
properties, being able to dynamically adapt based on assessed
conditions not only of the monitored facility but also of
its information infrastructure due to natural or malicious
physical and cyber attacks.

B. Brief review of relevant literature on resilient systems

Research on resilient systems is a relatively new subject
and recent work on resilient systems can be found in [1]–
[11]. In particular, [3] provides collections of papers that treat
resilience engineering as a paradigm for safety management
that focuses on “how to help people cope with complexity
under pressure to achieve success.” These papers explore
different facets of resilience as “the ability to anticipate and
adapt to the potential for surprise and failure.” Based on these
work, [4] further identifies four cornerstones of resilience as
knowing “what to do,” “what to look for,” “what to expect,”
and “what has happened.”

Relations between resilience and robustness have been
investigated. For example, [5] addresses different fire-prone
ecological systems and suggests that robustness tradeoffs in
these systems demonstrate resilience. In [6], resilient control
systems that emphasize control design in an adversarial
and uncertain cyber environment (as opposed to physical
disturbances) are developed. This control design is viewed as
pivoting on the tradeoff between robustness and resilience.
Optimality criteria are proposed for tradeoff between robust-
ness and resilience in modern industrial control systems.

Further developments of resilient systems with uncertain
cyber environments can be found in [1], [7]. Specifically,
[1] provides a conceptual framework and brief overview of
the architectural considerations for designing systems that
operate in hostile cyber environment with uncertainties in
complex networks and human interactions. The work in
[7] develops an intelligent resilient control algorithm for a
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wireless networked control system based on quantification
of the concept of resiliency in terms of quality of control.
Here, resiliency maintains normal operations in the face of
wireless interference incidents. Reference [12] further uses
the quality of control for designing resilient control strate-
gies for model-based building control, improving building
automation systems.

Resilient systems have also been considered regarding
security issues in, for example, [8], [9]. While [8] describes
experiences and success in cyber security programs leading
to more robust, secure, and resilient monitoring and control
systems in industrial assets, [9] discusses security-related
definitions for resilience, which includes integrity and con-
fidentiality in addition to availability.

Developments of resilient systems for computer systems
and for monitoring critical infrastructures can be found, for
instance, in [10] and [11]. In particular, in [10], metadata-
based resilience policies are enforced to design computing
systems that can dynamically adapt in a predictable way to
unexpected events. In [11], basic paradigms are proposed
for integration of diverse fault detection and identification
methods and control methods for achieving resilience in
critical infrastructures.

Finally, we mention that, although the resilient monitoring
structure in this work shares that developed in [2], the
design approaches are different. In particular, the monitoring
system designed here aims at selecting sensors to make
plant health assessments within desired time periods despite
cyber attacks, while that in [2] focuses on selecting sensor
configurations to maximize plant health assessment confi-
dence. Moreover, some advantages are also afforded by the
approach considered here, such as faster computations of the
monitored plant assessments.

C. Proposed monitoring system architecture

A resilient condition assessment monitoring (ReCAM)
system, as illustrated in Fig. 1, is addressed in this paper
that exhibits the properties envisioned in Section I-A. Natural
or malicious disturbances may occur at each unit operation
of the monitored system, while sensor data may not be
trustworthy due to cyber attacks, for example. The goal is to
dynamically collect and interpret sensor data and correctly
assess the physical condition or health of the monitored
system within desired timeliness requirements.

Fig. 1. Architecture of proposed ReCAM system.

Within this architecture, the quality of sensor data is
quantified by introducing the on-line assessed metric here
called information quality (IQ), which includes both data
quality (DQ) and data relevance (DR). While DQ quantifies
the trustworthiness of a given sensor data, DR quantifies
the importance of it. For example, consider two sensors
associated to the same process variable (e.g., temperature
in a given tank) in the monitored system. If one of the
sensor is already reporting data with high DQ about this
process variable, the DR associated with the other sensor
may be assigned to a low value. In this paper, we do not
explore DR further and only DQ is considered. In this regard,
there are numerous methods that can be used to online
compute sensor DQ, from techniques that rely on data- and
model-driven calculations and probing mechanisms to detect
data tampering to physical security procedures that rely on
surveillance to infer breaches at data centers such as I/O
boards, switches, programmable logic controllers (PLCs),
and supervisory control and data acquisition (SCADA) in-
stallations. Classically, DQ may be generated by statistical
analysis of sensor data. For example, suppose redundant
sensors are associated with a certain process variable. An
approach for generating DQ is investigating whether a sensor
data in question is statistically significantly different to other
redundant data. Voting techniques may also be used here.
DQ may also be computed using calibration methods (e.g.,
kernel regression techniques [13]). Comparing results of state
estimators and observed sensor data provides may yet be
another way to generate DQ. From the domain of cyber
security, monitoring network traffic around sensors may
provide another way of generating DQ based on detection
of suspicious and/or abnormal levels of message traffic,
which may indicate a cyber attack, hence potential tampering
of information. Finally, physical security violations (e.g.,
unlocked physical access points or observed breaches on
security measures) may also be used to qualitatively quantify
DQ for sensors located in suspected areas. In this work, DQ
is thus assumed to be given by some sort of watchdog entity
and interpreted via the notion of believability, defined in later
sections.

At each time instant, a (different) subset of the sensor
data (along with their IQ) may be active, which is chosen
by a sensor selection controller for condition assessments.
Although all sensor data may be available, only a subset
of active ones are utilized for plant assessment at each time
instant. The number of active sensors is accordingly selected
based on the particular needs for marshalling data in order
to meet observability requirements under varying conditions.
Benefits of this dynamic sensor selection include:

• Suppose all available sensors are always utilized for
plant condition assessment. Assume that a set of sen-
sors are compromised. Using all the data may lead
to confusion as sensor data may contradict with one
another. Considerable effort may have to be consumed
to filter out false sensor data.

• Due to selecting different subsets of active sensors at
different time instances, health assessment is not tied to
using only a particular set of sensor data. This feature
also makes it more difficult for attackers to identify
most important sensors to compromise.
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• Since only a subset of sensors is selected at each time
instant, information traffic is reduced and additional
number of active sensor are selected only when merited
to achieve required level of assessment quality.

In addition, since physical and cyber threats are typically
ill-characterized (e.g., due to lack of attack samples and the
intrinsic nature of malicious behaviors), thus limiting the use
of model-based techniques relying on assumed disturbance
characterizations, it is important to randomly search and
explore in a rational manner time-varying subsets of sensors
for selection, while exploiting sensors known to provide
best data for health assessments under observed conditions.
For this purpose, the theory of rational behavior (TRB)
is utilized here to synthesize sensor selection algorithms
[14]–[16]. Other work that introduce randomness to improve
system performance includes simulated annealing [17]. The
way sensors are selected avoids the so-called observation
stiffness, which implies that only a specific set of sensors
is used. While relying on a specific set of sensors may
provide improved performance under well characterized dis-
turbances, it is often an impediment to implementing graceful
degradation under ill-characterized situations. Contrarily, by
adaptively selecting different sets of sensors, observation
stiffness is relaxed and the monitoring system becomes more
flexible to handle disturbances. This is an example of duality
between performance and flexibility. Observation stiffness
provides optimal monitoring performance for well defined
disturbances but poor performance under unconsidered con-
ditions. Flexible observations, on the other hand, may yield
adequate (but suboptimal) observational performance but
may accommodate a variety of ill-defined situations.

In the proposed resilient monitoring architecture, data re-
trieved from the given set of active sensors is then processed
by a health condition assessment monitoring module. Due
to the time-varying mix of active sensors providing data for
plant assessment and the possible presence of cyber attacks,
the sensory information is partial and unreliable. To address
this, the health assessment module needs to have a network-
like topology capable to compute sufficiently accurate health
assessments under possible missing and/or unreliable data.
While Bayesian belief networks (BBN) are utilized in this
work for conducting these calculations, other network-based
probabilistic reasoning techniques may be used instead.

As illustrated in Fig. 1, the condition assessment monitor-
ing algorithms output health assessments of the monitored
plant for decision making, along with their associated assess-
ment quality (AQ), the latter metric used to judge confidence
on these assessments. This confidence is accordingly used
as input for the sensor selection controller to select sensor
configurations that meet expected levels of AQ.

D. Contributions and paper organization

By developing and evaluating the techniques discussed
for the proposed ReCAM system illustrated in Fig. 1, the
following contributions are achieved in this paper:

• formulation of a resilient monitoring approach for
adaptively meeting observability requirements under
severe disturbances, such as cyber-physical coordi-
nated attacks, to complex engineering facilities;

• development of the building blocks associated with the
proposed ReCAM system;

• demonstration of the resilient benefits associated with
the proposed monitoring solution.

The rest of this paper is organized as follows. Section
II provides a mathematical overview of the various layers
of the ReCAM system, while Section III describes the
monitored plant and sensors. The information, assessment,
and sensor selection layers of ReCAM system are developed
in Sections IV, V, and VI, respectively. The ReCAM system
is applied to a simplified power plant model in Section VII
and performance results are evaluated under non-resilient
and resilient approaches. Finally, conclusions are briefly
discussed in Section VIII.

II. RECAM STRUCTURE

A detailed structure of ReCAM is shown in Fig. 2. In this

Fig. 2. Detailed structure of ReCAM implementation.

structure, sensor observations from the monitored plant and
their associated DQs are first processed in the information
layer, which provides estimates of process variable PMFs,
PMF pv. These PMF estimates are then processed by a plant
assessment module modeling the monitored plant. Note that
instead of hard evidences (i.e., exact values of the observed
process variables), soft evidences (i.e., probability distribu-
tions of the variables) are entered. The plant assessment
module outputs PMF of plant assessment, PMFA. Using
PMFA, the entropy of this plant assessment is calculated.
If this entropy is less than a threshold, a definite decision is
made about plant conditions. If the entropy is higher than
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this threshold, a projected decision period, DP projected is
calculated. The value of DP projected is the estimated time
period from the previous definite decision of plant conditions
to the next definite decision. Based on the difference between
DP projected and a user defined (set point) decision period,
DPSP , penalties are generated and communicated to rational
controllers, which select sensor configurations that try to
keep DP projected as close as possible to DPSP .

Detailed descriptions of the constituent components of
the information and assessment layers are shown in Fig.
3. We briefly describe the building blocks in Fig. 3 from

Fig. 3. Details of ReCAM implementation.

bottom to top. To estimate the process variable PMF from
each (active) sensor, sensor DQ (or Dsensor) is interpreted
using the notion of believability. Demspter-Shafer Theory is
employed to combine PMF estimates from sensors assigned
to the same process variable. Smooth filtering, based on
first order dynamics, of combined process variable PMF
estimates is introduced so newly observed evidence for plant
assessment is not entered abruptly. Modeling relations among
process variables and plant conditions are used to assess plant
conditions based on the estimated process variable PMFs.
CPTs of BBNs are found assuming perfect sensor DQ and,
hence, they need to be accordingly tuned using aggregated
DQs of process variables. Aggregated DQ (or Dpv) is
calculated based on current estimates of process variable
PMF; the result often differs from Dsensor, especially when
multiple sensors are utilized for one variable and at early
phases of the PMF smooth filtering. When no sensor is
activated for a given process variable, smooth transition of
aggregated DQ (via first order dynamics) towards Dpv = 1
is introduced. An iterative procedure, which is a modification
of the iterative proportional fitting procedure (IPFP), is used
to enter estimated process variable PMF evidence into the
BBN. Assessments of plant condition is then computed by
the BBN. Implementation of the different components in the
ReCAM structure is further discussed throughout this paper.

III. MONITORED PLANT AND SENSORS

In this section, models of the monitored plant and sensor
measurements of process variables are introduced. Specifi-
cally, let V1, V2, . . . , VM denote random variables describing

discrete states of M process variables and G denote a
random variable describing plant state. The monitored plant
is modeled as a set of conditional probabilities of process
variables Vi, i = 1, 2, . . . ,M , given state of plant G and/or
other process variables. For convenience, BBN is used to
organize this information. In particular, the plant model is:{

[P (Vi|G)] for i ∈ I ⊆ {1, 2, . . . ,M},

[P (Vi|Vj)] for some pairs i, j ∈ {1, 2, . . . ,M}.
(1)

Notice that some Vi do not directly depend on the state
of plant G but on the state of certain process variable Vj .
On the other hand, sensor measurements are computed by
adding a given Gaussian noise to the true value of the process
variable. To model cyber attacks, the mean value of the noise
is accordingly modified based on the severity of the attack.
Sensor outputs are then computed by discretizing measured
process values into discrete quantities such as low, normal,
and high. A DQ model is used to calculate the effects of
the threat on the quality of the sensor measurements. The
output, Di, of this DQ model is the estimated sensor DQ.

IV. INFORMATION LAYER

For a given process variable V , Figure 4 illustrates the
operation of the information layer, which calculates the
estimated process variable PMF, P̂ (V ), that is subsequently
used as evidence at the assessment layer for computing
plant condition assessments. Suppose the DQ of sensor Si

Fig. 4. Information layer of proposed ReCAM system.

is Di and that Si observes σ ∈ Σ, where Σ is the set of
states of V (e.g., Low (L), Normal (N ), or High (H)). The
notion of believability of a sensor is employed to interpret
this observation in the form of PMF for V [2]. Formally,
believability is defined as follows:

B =
1

|Σ|
[(|Σ| − 1)Di + 1] , (2)

where |Σ| is the cardinality of the process variable state
space, Σ. Based on B, we calculate PMF ∗

i , where
PMF ∗

i (σ) denotes the probability of V = σ, used to
determine the target PMF for the smoothing process. In
particular, PMF ∗

i based on the observation s of Si is given
by:

PMF ∗
i (δ) = P{V = δ|s = σ} =

{
B if δ = σ,
1−B
|Σ|−1

if δ �= σ.
(3)

For example, suppose Σ = {L,N,H} and observation s is
N . Then PMF ∗

i is given by

PMF ∗
i =

[
PMF ∗

i (L) PMF ∗
i (N) PMF ∗

i (H)
]

=
[

1−B
2

B 1−B
2

]
. (4)
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Note that the calculation of PMF ∗
i results from only one

measurement reported by Si. If there is only one active
sensor, say Si, for V , we set PMF ∗ = PMF ∗

i . If there
are multiple (active) sensors observing V , Dempster-Shafer
combination rule [2] is used to combine multiple PMFs. The
formula for two sensors, say Si and Sj , is as follows:

PMF ∗
σ =

PMF ∗
i (σ)PMF ∗

j (σ)∑
δ∈Σ

PMF ∗
i (δ)PMF ∗

j (δ)
, σ∈Σ, (5)

where PMF ∗
i (δ) and PMF ∗

j (δ) is calculated by (3) and
PMF ∗

σ is the probability for V = σ in PMF ∗. Extension
of (5) to more than two sensors is straightforward. The
combined PMF ∗ is used as a target for the smoothing
process detailed below. The smoothing process serves as a
low pass filter and prevents abrupt changes in P̂ (V ). To
facilitate discussion, consider the following:

• measurements from all active sensors are syn-
chronously collected at the same time;

• let k (k = 1, 2, 3 . . .) denote the time index when
measurements from active sensors are collected.

For each time instant k, PMF ∗
i (k) for each active sensor is

calculated, which is then combined with others to compute
PMF ∗(k); notice that if Di(k) and s(k) do not change
within a given time window, PMF ∗(k) does not change
either. At each time instant k, the smoothing process in Fig.
4 is executed using the calculated PMF ∗(k) as a target
PMF. The dynamics for smoothing process is given by

τ
d

dt
PMF (t) = PMF ∗(k)− PMF (t), (6)

where
• at time t = 0, PMF (0) is uniform. For example,

PMF (0) = [ 1

3

1

3

1

3
] when Σ = {L,N,H};

• for time instant k, dynamics are simulated with target
PMF ∗(k) from tk−1 to tk = tk−1+Δt, where t0 = 0;

• Δt and τ are design parameters;
• PMF (tk) is P̂ (V ) for time k;

To calculate P̂ (V ), ones does not have to wait first for
the collection of a long sequence of measurements (from
active sensors). The computation of P̂ (V ) is conducted as
measurements are sequentially collected from active sensors.
In the following, to quantify the information contained in
P̂ (V ), the information entropy of P̂ (V ) is defined as

HI =
∑
σ∈Σ

−P̂ (V = σ) log|Σ| P̂ (V = σ). (7)

V. ASSESSMENT LAYER

The assessment layer estimates the monitored plant condi-
tions based on the estimated process variable PMFs. Figure
5 shows the operations of the assessment layer, where Vi,
i = 1, 2, . . . ,M are the process variables and G represents
the status of the plant. While other probabilistic reasoning
methods may be used, the plant assessment module utilizes
a BBN in the present work, where estimated PMFs are
entered using a modification of the iterative proportional
fitting procedure (IPFP) documented in [18]. The assessment
algorithm is applied as P̂ (Vi), i = 1, 2, . . . ,M are calculated
from sensor measurements sequentially collected at time k =
1, 2, . . .. When using the assessment algorithm to compute

Fig. 5. Assessment layer of ReCAM system.

the a posteriori belief of plant state P̂ (G), the initial (a
priori) belief of plant state is the result from the assessment
computed at previous time step. That is, if the current time
index is k, the a priori belief for the assessment algorithm is
P̂ (G) calculated at time k−1. When P̂ (Vi), i = 1, 2, . . . ,M
at time k are consistent with P̂ (G) calculated at time k− 1,
the assessment entropy of the plant, defined as:

HA =
∑

σ∈ΣG

−P̂ (G = σ) log|ΣG| P̂ (G = σ), (8)

decreases from its previous value calculated at k−1. Once the
assessment entropy of plant decreases below a (user-defined)
decision threshold, a definite decision is made about the plant
state (e.g., whether the plant is normal, degrading, or down)
and the belief of plant state is reset to complete ignorance
(e.g., P (G) = [ 1/3 1/3 1/3 ]) for the subsequent
assessment, and the assessment procedure repeats. Resetting
here means resetting the roots of the BBN. Note that P̂ (G) is
used here as statistics for decision making and not reported
to the user, but rather the definite decisions (e.g., whether
plant is normal, degrading, or down). Moreover, the notion
of decision period is of importance. It is defined as the time
window that starts at the moment of resetting the plant belief
to complete ignorance and ends when a decision on plant
state is made. Decision period is the time needed to make a
definite decision regarding the state of the monitored plant.
During the decision period, no updated decision is available
to a user (e.g., a plant operator) and the monitoring system
reports/keeps the definite decision on plant state computed
during the previous decision period.

A. Modification of CPTs and aggregated data quality

Because CPTs of BBNs are trained assuming perfect
DQs, they need to be accordingly modified considering
the estimated DQs. A method used in this work calculates
the aggregated DQ corresponding to the estimated process
variable PMF. Specifically, consider an estimated PMF for
the process variable V , P̂ (V ) and calculate its entropy, HI ,
via (7) to find:

x̄ = argmax
σ∈Σ

P̂ (V = σ), (9)

and find D̄ such that

HI = Entropy(x̄, D̄) (10)

where Entropy(x,D) is the entropy of the PMF calculated
(by (2)–(3)) when a sensor measurement is x with DQ
D. Once the aggregated DQ is computed, the CPT for the
process variable is modified by

Probmodified(V = σ|A) = Prob(V = σ|A)

+ (
1

n
− Prob(V = σ|A))(1− D̄) (11)
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for σ ∈ Σ, where n is the number of possible states of
V and A represents parent nodes of V . Note that when
D̄ = 0, the modified conditional probabilities become 1

n
and

when D̄ = 1, the modified conditional probabilities are the
same as the original ones. Moreover, when modifying the
CPT by (11), the conditional probabilities, Prob(V = σ|A),
are always obtained from the original CPT. Similar to the
strategy used at the information layer, when no sensors for
the given process variable are active, the first order dynamics
shown below is employed to “fade” the aggregated DQ, thus
preventing abrupt changes to the monitoring system.

τD̄
˙̄D(t) = 1− D̄(t), (12)

where

• at time t = 0, D̄(0) is the last aggregated DQ before
all sensors associated with the process variable become
inactive;

• for time instant k, dynamics are simulated from tk−1

to tk = tk−1 +Δt, where t0 = 0;
• Δt and τD̄ are design parameters;
• D̄(tk) is the faded aggregated DQ at time k.

This computation continues until at least one sensor asso-
ciated with the process variable becomes active. Then, the
aggregated DQ is again calculated as described above.

VI. SENSOR SELECTION LAYER

The goal of the sensor selection layer is to meet a certain
(user-defined) decision period. The goal is not to find an
optimal sensor configuration (SC) per se, but rather to control
selections of SCs so that the assessment entropy decreases
as needed to meet decision period requirements. There is
no need for plant operating conditions and sensor DQs (i.e.,
threats) to stay the same, but they can change. In this work,
each sensor is equipped with a rational controller (RC) to
select its operation mode. The RCs are designed to achieve
monitoring objectives based on the penalties received.

A. Rational Controller

The RCs designed here are based on the ring element [14].
The state space of the ring element is [0, 1). When the ring
element is in [0, 0.5), the sensor associated with it is inactive,
thus reporting no data. Similarly, when the ring element is in
[0.5, 1), the sensor associated with it is active. When sensors
switch to active (inactive), their RCs pick a state in [0.5, 1)
([0, 0.5)) with uniform probability. The dynamics of the ring
element is described as follows:

ẋ = ϕN ({x}) (13)

where {x} takes the fractional part of x, ϕ(x) is the penalty
associated with x, and N is a positive number referred
to as the measure of rationality. The dynamics in (13) is
approximated as

x(k + 1) = x(k) + ΔtϕN ({x(k)}) (14)

where k denoted the index of the measurement step and
Δt = 0.001 in this work.

B. Penalty Function

Ring elements are penalized so that the desired decision
period is achieved within some tolerance. To this end, the
expected decision period is estimated based on the time
elapsed since last decision and the current rate of assessment
entropy change. That is, assume the current measurement
step is k and the assessment module has just processed the
soft evidences computed from measurements collected at k.
The decision period is then estimated as follows:

D̂P = TE +
(DT −H(k))

(HA(k)−HA(k − 1))
, (15)

where DT is the decision threshold, TE is the time elapsed
since last decision, HA(k) is the assessment entropy at time
k, and D̂P is the projected decision period. The assessment
entropy is calculated using (8). Appropriate penalty functions
can be found from numerical experiments following the
rationale bellow:

• If projected decision period is longer than desired,
penalize inactive sensors more;

• If projected decision period is shorter than desired,
penalize active sensors more;

• Sensors with high D incur less penalty when active
and more penalty when inactive;

• Sensors with low D incur more penalty when active
and less penalty when inactive.

VII. APPLICATION

A. Simplified power plant

Application of ReCAM to a simplified power plant model
is considered here, consisting of six unit operations and 16
process variables as shown in Fig. 6. The six unit operations

Fig. 6. Simplified power plant for demonstration.

are: main steam generator (MSG), reheat steam generator
(RSG), high pressure turbine (HPT), low pressure turbine
(LPT), feed water pump (FWP), and condenser (C). The 16
process variables considered are listed below.

• Twelve of the 16 process variables are tempera-
tures and pressures at the six unit operations. These
process variables are denoted by Pi and Ti, i ∈
{M,R,H,L, F,C}, for pressure and temperature, re-
spectively, at the unit operation with i as the first letter
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in its abbreviation. For example, temperature at LPT
is indicated by TL.

• The remaining four process variables are strain at
boiler near MSG (SM ), humidity around RSG (HR),
temperature in atmosphere around HPT (Ta), and ac-
celeration at LPT (AL).

Two sensors are assigned to each process variable. We use
the index j, j = 1, 2, to denote the jth sensor for a process
variable. For example, TM1 and TM2 denote the first and
second sensor for TM , respectively.

Four types of physical anomalies are considered:

• Anomaly #1, in MSG: Low heat transfer;
• Anomaly #2, in RSG: Pipeline rupture;
• Anomaly #3, in HPT: Improper heat insulation;
• Anomaly #4, in LPT: Decreased efficiency;

Process variables not mentioned in the characterization of a
particular anomaly may also be affected. For example, when
MSG is malfunctioning, TM is low. In this case, TH will
also be low due to physical association.

B. Sensor models

We consider two sets of redundant sensors, A and B,
each associated with the sixteen process variables introduced
above. Set A (or B) is the set of sensors with subscript 1
(or 2). Sensors are assumed to have additive Gaussian white
noise with zero mean and variance σ2 = (m×L)2, where L
is the absolute value of the difference between the baseline
value of the process variable corresponding to the given
sensor and its high/low threshold. Moreover, m is tunable
and chosen to be 0.2. If a sensor is attacked, the attacker
adds bias according to whether true value of the measured
process variable is:⎧⎪⎨⎪⎩

> high threshold, add bias − (TL)× n× L,

< low threshold, add bias (TL)× n× L,

otherwise, add bias − (TL)× n× L,

(16)

where TL ∈ [0, 1] is the treat level of attack, chosen to be
0.7, and n is tunable, chosen to be 8. It is assumed that the
assessed DQ of a sensor is given by D = 1 − TL, where
TL = 0 if the sensor is not attacked. Equation (16) indicates
that the attacker makes the sensor output low (high), while
the true value of the process variable is high (low). Moreover,
when the true value is between high and low, the attacker
makes the sensor output low.

C. Comparison with non-resilient monitoring

In this subsection, we compare the performance of the
proposed ReCAM system against a non-resilient approach.
A non-resilient approach refers to a monitoring system that
always uses all sensors deployed, without utilizing DQ infor-
mation. Hard evidences from sensors are thus always directly
entered into the plant assessment module. For simplicity, we
assume that only sensors in set A are utilized for the non-
resilient case.

In the experimental run here presented, the power plant
is assumed to operate normal from 0 to 749 seconds. From
750 to 4000 seconds, Anomaly #2 is introduced. Moreover,
two different cyber attacks are considered in coordination

with this physical attack. Specifically, assume that no cyber
attack is present from 0 to 1499 seconds. Then,

• Attack #1: From 1500 to 2499 seconds, 12 sensors
compromised:

– in set A, three sensors are attacked: PR1, TR1,
and HR1;

– three additional sensors in set A are randomly
chosen to be attacked;

– six sensors from set B other than PR2, TR2, and
HR2 are randomly chosen to be attacked.

• Attack #2: From 2500 to 4000 seconds, 12 sensors
compromised:

– previously attacked sensors are restored;
– similar procedure is followed to choose the sen-

sors to be attacked.
Figure 7 shows the conditions assessed for MSG and RSG

by ReCAM and the non-resilient system. Simulation results

Fig. 7. Assessments for MSG and RSG.

shown that for the cyber-physical attack considered here,
the ReCAM system is able to correctly identify physical
anomalies and assess the condition of the monitored system,
while the non-resilient monitoring system is often confused,
identifying incorrect anomalies and making wrong plant
assessments. Table I shows that there is significant confusion
in making a conclusive assessment under non-resilient mon-
itoring case. Specifically, in period 4, the ReCAM system
does not get confused as cyber attacks are injected, correctly
assessing that only one device is malfunctioning, while the
non-resilient system wrongly indicates three malfunctioning
devices 77.37% of the time.

TABLE I

NUMBER OF DEVICES CONSIDERED MALFUNCTIONING WITH

CERTAINTY

# of Period 1 Period 2 Period 3 Period 4
Devices (Normal) (anomaly #2) (attack #1) (attack #2)

R NR R NR R NR R NR
0 100% 100% 0% 0.13% 0% 0% 0% 0.26%
1 0% 0% 100% 99.87% 100% 82.58% 100% 0.26%
2 0% 0% 0% 0% 0% 17.42% 0% 22.11%
3 0% 0% 0% 0% 0% 0% 0% 77.37%

In order to compare the performance of ReCAM and non-
resilient approach, we introduce the measure of resiliency,
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defined as the norm-2 distance, ‖T − T̂‖ with

T =
[
pMSG pRSG pHPT pLPT pFWP pCondenser

]
(17)

and

T̂=
[
p̂MSG p̂RSG p̂HPT p̂LPT p̂FWP p̂Condenser

]
, (18)

where pi and p̂i are, respectively, the true and estimated
probabilities that component i is malfunctioning. We conduct
a longer simulation with scenarios similar to those considered
in Subsection VII-C. However, we assume that the RSG
anomaly occurs starting from time 2100 and attacks 1 and
2 commence at 7500 and 12750, respectively. Note that,
within this scenario, pi = 0 for i �= RSG, pRSG = 0
for time < 2100, and pRSG = 1 otherwise. Figure 8
compares the measures of resiliency for resilient and non-
resilient systems. When sensors are not attacked, systems

Fig. 8. Measures of resiliency for resilient and non-resilient systems

with and without resilient monitoring algorithms have similar
‖T − T̂‖2 values. When cyber attacks occur, system without
resilient monitoring algorithms performs much worse (with
‖T − T̂‖2 > 1 most of the time) than system with resilient
monitoring algorithm (‖T − T̂‖2 < 0.8).

VIII. CONCLUSION

In this paper, a ReCAM system is proposed to meet
resiliency challenges when monitoring complex engineering
facilities. Chief among the challenges is the ability for the
monitoring system to correctly assess facility health within
desired decision period despite cyber-physical coordinated
attacks. The proposed ReCAM system, which is comprised
of information, assessment, and sensor selection layers, is
able to meet the challenges considered. In particular, the
ReCAM system exhibits resiliency and is able to dynamically
adapt and reconfigure depending on assessed conditions not
only on the monitored facility but also on the information
infrastructure. Algorithms for the various ReCAM system
layers were developed and benefits of the ReCAM system
were demonstrated using a simplified power plant model.
Although comparisons of the resilient monitoring system

developed here to existing monitoring systems are not con-
ducted in this paper, they will be addressed in the future.
A number of scenarios will also be developed to further
illustrate the effectiveness of the methods used here.
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